6 research outputs found

    General form of almost instantaneous fixed-to-variable-length codes

    Full text link
    A general class of the almost instantaneous fixed-to-variable-length (AIFV) codes is proposed, which contains every possible binary code we can make when allowing finite bits of decoding delay. The contribution of the paper lies in the following. (i) Introducing NN-bit-delay AIFV codes, constructed by multiple code trees with higher flexibility than the conventional AIFV codes. (ii) Proving that the proposed codes can represent any uniquely-encodable and uniquely-decodable variable-to-variable length codes. (iii) Showing how to express codes as multiple code trees with minimum decoding delay. (iv) Formulating the constraints of decodability as the comparison of intervals in the real number line. The theoretical results in this paper are expected to be useful for further study on AIFV codes.Comment: submitted to IEEE Transactions on Information Theory. arXiv admin note: text overlap with arXiv:1607.07247 by other author

    The MPEG-4 Audio Lossless Coding (ALS) . . .

    No full text
    MPEG-4 Audio Lossless Coding (ALS) is a new extension of the MPEG-4 audio coding family. The ALS core codec is based on forward-adaptive linear prediction, which o#ers remarkable compression together with low complexity. Additional features include long-term prediction, multichannel coding, and compression of floating-point audio material. In this paper authors who have actively contributed to the standard describe the basic elements of the ALS codec with a focus on prediction, entropy coding, and related tools. We also present latest developments in the standardization process and point out the most important applications of this new lossless audio format
    corecore